A Parallel Space-time Domain Decomposition Method for Unsteady Source Inversion Problems

نویسندگان

  • Xiaomao Deng
  • Xiao-Chuan Cai
  • Jun Zou
  • Samuli Siltanen
چکیده

In this paper, we propose a parallel space-time domain decomposition method for solving an unsteady source identification problem governed by the linear convection-diffusion equation. Traditional approaches require to solve repeatedly a forward parabolic system, an adjoint system and a system with respect to the unknown sources. The three systems have to be solved one after another. These sequential steps are not desirable for large scale parallel computing. A space-time restrictive additive Schwarz method is proposed for a fully implicit space-time coupled discretization scheme to recover the timedependent pollutant source intensity functions. We show with numerical experiments that the scheme works well with noise in the observation data. More importantly it is demonstrated that the parallel space-time Schwarz preconditioner is scalable on a supercomputer with over 103 processors, thus promising for large scale applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Level Space-Time Domain Decomposition Methods for Three-Dimensional Unsteady Inverse Source Problems

Abstract As the number of processor cores on supercomputers becomes larger and larger, algorithms with high degree of parallelism attract more attention. In this work, we propose a two-level space-time domain decomposition method for solving an inverse source problem associated with the time-dependent convection-diffusion equation in three dimensions. We introduce a mixed finite element/finite ...

متن کامل

Two-level space-time domain decomposition methods for unsteady inverse problems

As the number of processor cores on supercomputers becomes larger and larger, algorithms with high degree of parallelism attract more attention. In this work, we propose a novel space-time coupled algorithm for solving an inverse problem associated with the time-dependent convection-diffusion equation in three dimensions. We introduce a mixed finite element/finite difference method and a one-le...

متن کامل

Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study

This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...

متن کامل

Elastic frequency-domain finite-difference contrast source inversion method

In this work, we extend the finite-difference contrast source inversion (FDCSI) method to the frequency-domain elastic wave equations, where the parameters describing the subsurface structure are simultaneously reconstructed. The FD-CSI method is an iterative nonlinear inversion method, which exhibits several strengths. First, the finite-difference operator only relies on the background media a...

متن کامل

Fully implicit Lagrange-Newton-Krylov-Schwarz algorithms for boundary control of unsteady incompressible flows

We develop a parallel fully implicit domain decomposition algorithm for solving optimization problems constrained by time dependent nonlinear partial differential equations. In particular, we study the boundary control of unsteady incompressible Navier-Stokes equations. After an implicit discretization in time, a fully coupled sparse nonlinear optimization problem needs to be solved at each tim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015